BaseHDBSCANTuner
Bases: object
A base class with the HDBSCAN functionality without any references to BERTopic. In the future this may be broken out for HDBSCAN tuning outside of BERTopic.
Source code in TopicTuner\basetuner.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
|
bestParams
writable
property
The best min_cluster_size and min_samples values. These are set by the user, not automatically. They are used in various places as default values (if set).
clearSearches()
A convenience function that resets the saved searches
Source code in TopicTuner\basetuner.py
247 248 249 250 251 |
|
createVizReduction(method='UMAP')
Uses the reducer to create a 2D reduction of the embeddings to use for a scatter-plot representation
Source code in TopicTuner\basetuner.py
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
|
getHDBSCAN(min_cluster_size=None, min_samples=None)
Exposed for convenience, returns a parameterized HDBSCAN model per the current version in BaseHDBSCANTuner (with the params other than min_cluster_size and min_samples)
Source code in TopicTuner\basetuner.py
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
|
getVizCoords()
Returns the X,Y coordinates for use in plotting a visualization of the embeddings.
Source code in TopicTuner\basetuner.py
274 275 276 277 278 279 280 281 282 |
|
gridSearch(searchRange)
For any n (int) in searchRange, generates all possible min_samples values (1 to n) and performs the search.
Source code in TopicTuner\basetuner.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
|
pseudoGridSearch(cluster_sizes, min_samples)
Note that this is not a really a grid search. It will search for all cluster_sizes, but only search for the percent values of those cluster sizes. For example if cluster_sizes were [range(100,102)] and min_samples [val/100 for val in [range(10, 101 ,10)]], a clustering for each percentage value in min_samples for each value in cluster_sizes would be run for a total of 20 clusterings (cluster sizes 100 and 101 * percent values of those for 10%, 20%, 30%,...100%).
Source code in TopicTuner\basetuner.py
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
|
randomSearch(cluster_size_range, min_samples_pct_range, iters=20)
Run a passel (# of iters) of HDBSCAN within a given range of parameters. cluster_size_range is a list of ints and min_samples_pct_range is a list of percentage values in decimal form e.g. [.1, .25, .50, .75, 1].
This function will randomly select a min_cluster_size and a min_samples percent value from the supplied values. The min_samples percent will be used to calculate the min_samples parameter to be used. That value will be rounded up to 1 if less than 1 and cannot be larger than the selected cluster_size. So if the random cluster size is 10 and the random percent is .75 then the min_cluster_size=10 and min_samples=8.
All of the search results will be added to ResultsDF and a separate DataFrame containing just the results from just this search will be returned by this method.
Source code in TopicTuner\basetuner.py
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
|
runHDBSCAN(min_cluster_size=None, min_samples=None)
Cluster the target embeddings (these will be the reduced embeddings when run as a TMT instance. Per HDBSCAN, min_samples must be more than 0 and less than or equal to min_cluster_size.
Source code in TopicTuner\basetuner.py
88 89 90 91 92 93 94 95 96 97 98 99 |
|
simpleSearch(cluster_sizes, min_samples)
A clustering for each value in cluster_sizes will be run using the corresponding min_samples value. For example if cluster_sizes was [10, 10, 12, 18] and min_samples was [2, 8, 12, 9], then searches for the pairs 10,2, 10,8, 12,12, and 18,9 would be performed. The len of each list must be the same. Each cluster_size must be > 0 and min_samples must be >0 and <= cluster_size.
Source code in TopicTuner\basetuner.py
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
|
summarizeResults(summaryDF=None)
Takes DataFrame of results and returns a DataFrame containing only one record for each value of number of clusters. Returns the record with the lowest number of uncategorized documents. By default runs against self.ResultsDF - the aggregation of all searches run for this model.
Source code in TopicTuner\basetuner.py
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
|
visualizeEmbeddings(min_cluster_size=None, min_samples=None, width=800, height=800, markersize=5, opacity=0.5)
Visualize the embeddings, clustered according to the provided HDBSCAN parameters. If docs has been set then the first 400 chars of each document will be shown as a hover over each data point.
Returns a plotly fig object
Source code in TopicTuner\basetuner.py
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
|
visualizeSearch(resultsDF=None)
Returns a plotly fig of a parrallel coordinates graph of the searches performed on this instance.
Source code in TopicTuner\basetuner.py
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
|