TopicModelTuner
Bases: BaseHDBSCANTuner
TopicModelTuner (TMT) is a class facilitate the interactive optimization of HDBSCAN's min_clust_size and min_sample parameters in the context BERTopic.
The convenience function wrapBERTopicModel() returns a TMT instance initialized with the provided BERTopic model's embedding model, HDBSCAN and UMAP instances and parameters.
Alternatively a new TMT instance can be created from scratch and, in either case, once the optimized parameters have been identified, calling getBERTopicModel() returns a configured BERTopic instance with the desired parameters.
TMT is a subclass of BaseHDBSCANTuner. BaseHDBSCANTuner provides the basic HDBSCAN related functionality and TMT adds the BERTopic specific pieces.
TMT does not explicitly provide functionality for testing alternative UMAP parameters or HDBSCAN parameters other than min_cluster_size or min_samples. However both the HDBSCAN and UMAP models are exposed within the class and can be set to any parameters desired.
Source code in TopicTuner\topictuner.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
|
__init__(embeddings=None, embedding_model=None, docs=None, reducer_model=None, reducer_random_state=None, reducer_components=5, reduced_embeddings=None, hdbscan_model=None, viz_reduction=None, viz_reducer=None, verbose=0)
Unless explicitly set, TMT Uses the same default param defaults for the embedding model as well as HDBSCAN and UMAP parameters as are used in the BERTopic defaults.
- 'all-MiniLM-L6-v2' sentence transformer as the default language model embedding.
- UMAP - metric='cosine', n_neighbors=5, min_dist=0.0
- HDBSCAN - metric='euclidean', cluster_selection_method='eom', prediction_data=True, min_cluster_size = 10.
Options include:
- Using your own embeddings by setting embeddings after creating an instance
- Using different UMAP settings or a different dimensional reduction method by setting reducer_model
- Using different HDBSCAN parameters by setting hdbscan_model
These can be set in the constructor or after instantiation by setting the instance variables before generating the embeddings or reduction.
Unlike BERTopic, TMT has an option for saving both embeddings and the doc corpus - or optionally omitting them.
Source code in TopicTuner\topictuner.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
|
createEmbeddings(docs=None)
Create embeddings
Source code in TopicTuner\topictuner.py
169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
|
createVizReduction(method='UMAP')
Uses the reducer to create a 2D reduction of the embeddings to use for a scatter-plot representation
Source code in TopicTuner\topictuner.py
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
|
getBERTopicModel(min_cluster_size=None, min_samples=None)
Returns a BERTopic model with the specified HDBSCAN parameters. The user is left to specify their chosen best settings after running a series of parameters searches.
This function is necessary because any given HDBSCAN parameters will return somewhat different results when clustering a given UMAP reduction, simply using the parameters derived from a tuned TMT model will not produce the same results for a new BERTopic instance.
The reason for this is that BERTopic re-runs UMAP each time fit() is called. Since different runs of UMAP will have different characteristics, to recreate the desired results in the new BERTopic model we need to use the same random seed for the BERTopic's UMAP as was used in the TMT model.
Source code in TopicTuner\topictuner.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
|
getVizCoords()
Returns the X,Y coordinates for use in plotting a visualization of the embeddings.
Source code in TopicTuner\topictuner.py
212 213 214 215 216 217 218 219 220 221 |
|
load(fname)
staticmethod
Restore a saved TMT object from disk
Source code in TopicTuner\topictuner.py
265 266 267 268 269 270 271 272 273 274 |
|
reduce()
Reduce dimensionality of the embeddings
Source code in TopicTuner\topictuner.py
184 185 186 187 188 189 190 191 192 193 |
|
save(fname, save_docs=True, save_embeddings=True, save_viz_reducer=True)
Saves the TMT object. User can choose whether or not to save docs, embeddings and/or the viz reduction
Source code in TopicTuner\topictuner.py
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
|
wrapBERTopicModel(BERTopicModel)
staticmethod
This is a helper function which returns a TMT instance using the values from a BERTopic instance.
Source code in TopicTuner\topictuner.py
123 124 125 126 127 128 129 130 131 132 133 |
|